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LETTER TO THE EDITOR 

Non-universal critical behaviour in planar king models with 
extended, radially symmetric defects 

R Z Barievt and I Peschel 
Fachbereich Physik, Freie Univemitit Berlin, Arnimallee 14, D-IOW Berlin 33, Federal 
Republic of Germany 

Received 3 October 1990 

Abstract. Using conformal mapping and finite-size scaling we determine the local magnetic 
exponent near a defect characterized by couplings of the form J ( r ) = J ( I + A / r ) ) .  In 
accordance with phenomenological considerations, we find that it depends continuously 
an the amplitude A, both for a defect in the interior and on the boundary 

The theory of conformal invariance classifies homogeneous two-dimensional critical 
systems and determines their critical exponents and correlation functions without and 
with surfaces [ l ,  21. But conformal invariance also holds when the translational sym- 
metry is broken by a straight defect line [ 3 , 4 ]  or a boundary near which the system 
is inhomogeneous on a large scale [SI. These two cases are particularly interesting 
since it has been shown that they have non-universal exponents [6-113; also the validity 
of conformal mapping for such a situation has been demonstrated [3-51. 

In this letter we study another type of inhomogeneous system which is physically 
quite reasonable but has not been treated so far. We consider an Ising square lattice 
with the Hamiltonian 

m m  

H =  - 1 1 ( J I ( ~ ) ~ ~ m n ~ ~ m n + l + J 2 ( ~ ) ~ ~ m n ~ ~ + l . n )  (1) 
m--m n=-m 

where = *l and the interaction constants J1,J r f  = J,,2( 1 +A( r ) )  depend on the 
distance r= (mz+  n2+l)"* from a centre. For A(r) we will assume the form A(r) = 
A/*". Then, for m-00 we have a lattice with a point-like defect, while for a+O the 
defect extends over the whole system. The case (I = 1 is particular: a phenomenological 
approach 1121 then predicts that locally, i.e. near the centre of the defect; the system 
shows non-universal behaviour that manifests itself in the fact that the critical exponents 
are continuous functions of the microscopic parameter A. We test and verify this 
prediction, using conformal mapping and finite-size calculations. We calculate the 
exponent of the local order parameter and extend the considerations also to the case 
where the defect is centred on a boundary and for which the phenomenological theory 
has not yet been worked out. 

We first consider an infinite system with the centre of the defect at the origin. 
Following Cardy 1131 we use the conformal transformation 

L 
2 a  

w(z)=-Inz 

t Permanent address: Physieo-Technical Institute, Academy of Sciences of the USSR, Kazan 420029, USSR. 
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to map the complex z-plane onto a strip w = U + i U, -w < U < w, 0 s u s  L with periodic 
boundary conditions. The inhomogeneity A(z) then transforms according to [5] 

A(w) = I ~ ' ( z ) l - ~ , A ( z )  

=($)" exp[(y,-a)2vu/L]A (3) 

where y ,  is the scaling dimension of the temperature variable which equals one in our 
case. In general, this A(w) describes a system with couplings depending on the position 
along the strip. For a = y, = 1, however, the system becomes homogeneous with K i  = 
JJk.T given by 

K j  = Kjc( I+?) (4) 

where K i ,  is the value of K.  at  the critical point T = T,. Thus, starting from a defect 
problem in the plane we arrive at a problem without defect in the strip. This is in 
contrast to the cases studied so far. 

Depending on the sign of A, the system in the strip is slightly above or below the 
bulk critical temperature by a n  amount of order 1/L. A similar situation occurs if one 
maps a system with inhomogeneous boundary on a strip [5]. Then, however, the 
couplings are non-uniform across the strip. 

Conformal invariance implies a correlation length 5- L in the strip and gives the 
relation 

for the anomalous dimension x, of the local order parameter [13], where f is an 
anisotropy parameter and in our case L= (sinh 2K2/sinh 2K,)"* [14]. The scaling 
dimension x, determines the behaviour of the local magnetization near the defect 
( U ~ ) - T ~ I ,  P I =  vx, and in our case U =  1 [15,16]. In order to test this, we consider a 
lattice with L sites across the strip and calculate 5 from the gap in the spectrum of 
the transfer matrix T =  exp(-H), where H is bilinear in fermions. As is well known, 
the gap is the difference between the two fermionic ground state energies of H with 
periodic and antiperiodic boundary 'conditions, respectively [IS, 161. Thus, 

D f o r A > O  ( T < T , )  
5-'= I D +  y ( 0 )  f o r A < o ( T > T , )  

where D is the difference 

and the single-fermion eigenvalues y ( q ) s O  are given in general by [15] 

cosh y(q)=cosh2KTcosh2K,-s inh2K~sinh2K2cosq (7) 

with sinh 2 K :  = l/sinh ZK,. If c, is the Ith Fourier coefficient of y ( q )  
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An analysis of (8) shows that, in the limit I,+ CO, the largest contribution comes from 
small values of the momentum q and one can approximate 

Y ( 9 ) = 5  d g G  U = 4r(K,,+sinh 2K,,K,,)A. (10) 

Using the change of variable q = (a/L) sinh U, extending the limits of integration with 
respect to U to *CO and using the result in (9) finally gives D = I(u)/L, where 

s inh2udu 
sinh(1a cosh U). 

I(u)= 

Thus D is, in fact, proportional to I/  L and the exponent PI is given by 

Limiting forms are 
i -  (a/4a)+.0(u2) lUl<< 1 

f l l ( u ) =  m e - a [ ~ + ~ ( a - ' ) l  U >> 1 (13) 

The result for small a agrees with the prediction of the phenomenological approach, 
in which PI was calculated in first-order perturbation theory [ 121. A plot of the function 
P l ( a )  is shown in the figure. 

One can repeat these considerations for a half-infinite system. In this case the centre 
of the defect is placed on the (straight) boundary. The transformation w = (L/a)  In z 
then maps this system onto a strip with free boundary conditions and couplings 
K j  = Kic(l + TA/ L). The deviation from criticality in the strip is now only half as large 
as before. 

The correlation length in this case is obtained from the smallest y ( q )  where the 
momenta q have to be determined from the equation [ I l ,  181 

[ ( l 4 / 2 a )  +o(e-") U<< -1. 

(14) 
sinh 2K: sin q 

cosh2K:sinh2K2-sinh2K:cosh2K,cosq 
=tan( Lq). 

The smallest y ( q )  has q -  1/L and one can simplify the left-hand side of (14). The 
equation then becomes, with x = Lq 

2x 
- = t a n x  
U 

and has the smallest real solution in the interval O S  x S  a for 4 2 s  1. For u / 2 >  1, x 
becomes imaginary, x = iy, and the equation then reads 

2Y -=tanhy 
U 
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which, incidentally, is the mean-field equation for a spin one-half ferromagnet. Sub- 
stituting the solutions into 

then gives a result which is again proportional to 1/ L. The local magnetic surface 
exponent Prl then follows from L / ~ = < ? $ P , , , .  In general, it has to be calculated 
numerically. but limiting forms are 

f - ( a / T 2 )  + o ( a 2 )  tal<< 1 

a<< -1. 
P r l ( a ) =  ( l / n ) a  e-"'2+0(e-") a >> 1 (18) r (lol/257)+ (m/Ial) +O(a-2)  

The complete function &,(a) is also shown in figure 1. The phenomenological theory . 
has not ye! been worked out for!he present case, so !hP reSE!! for f i r ;  is comp!ete!y new. 

-L -3 -2 -1 

\ 
1 2 3 L  

a 
Figure 1. Local critical exponent of the magnetization near a defect situated in the interior 
(8,) and an the boundary (&) as a function of the microscopic parameter a, equation ( I O ) .  

in conciusion we have shown ihai, iof a deieci wiih radiai symmetry, coniormai 
invariance holds and the local magnetic exponent is a function of the microscopic 
parameters and thus non-universal. Its qualitative behaviour is the same for a defect 
in the interior or on the boundary. It becomes smaller if the defect enhances the 
couplings over their bulk value. This reflects the tendency towards local order and is 
similar to the case of a system with an inhomogeneous straight boundary [&Ill .  

finite .value of A. Therefore one does not find a local magnetization which stays finite 
right up to the critical temperature and then drops to zero discontinuously. On the 
other hand, if the defect diminishes the couplings, the same linear dependence of the 
exponents on A is found here for large negative values of A. 

iiowever, in coiiiiaji io &is latier cdse, the does va$ijh bere for any 
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